22 Set Theory Demo
Here’s a demo of Carnap’s (alpha-stage) support for natural deduction in set theory.
The rules are those of the Carnap book’s first-order system (The one used in a proof checker constructed with .FirstOrder
—See the documentation for Montague Systems), plus the following bi-directional replacement rules:
Rule | Abbreviation | Premises | Conclusion |
---|---|---|---|
Union Definition | Def-U |
\(Φ(τ∈σ∨τ∈θ)\) | \(Φ(x∈σ∪θ)\) |
Intersection Definition | Def-I |
\(Φ(τ∈σ∧τ∈θ)\) | \(Φ(x∈σ∩θ)\) |
Complement Definition | Def-C |
\(Φ(τ∈σ∧¬τ∈θ)\) | \(Φ(x∈σ/θ)\) |
Power Set Definition | Def-P |
\(Φ(τ⊆θ)\) | \(Φ(τ∈Pow(θ))\) |
Subset Definition | Def-S |
\(Φ(∀x(x∈τ→x∈θ))\) | \(Φ(τ⊆θ)\) |
Separation Definition | Def-{} |
\(Φ(τ∈θ∧φ(τ))\) | \(Φ(τ∈{x∈θ|φ(x)})\) |
Equality Definition | Def-= |
\(Φ(∀x(x∈τ↔x∈σ))\) | \(Φ(τ=σ)\) |
Symbols are:
Symbol | Keyboard |
---|---|
∩ | I |
∪ | U , |
∈ | in , << , <e |
⊆ | within , <( , <s |
Here’s an example proof:
Playground
Ax(x in a -> x within a) :PR
Show P(a) within P(P(a))
Show Ax(x in P(a) -> x in P(P(a)))
Show b in P(a) -> b in P(P(a))
b in P(a) :AS
b within a:Def-P 5
Ax(x in b -> x in a):Def-S 6
Show b in P(P(a))
Show Ax(x in b -> x in P(a))
Show c in b -> c in P(a)
c in b :AS
c in b -> c in a:UI 7
c in a :MP 11 12
c in a -> c within a :UI 1
c within a:MP 13 14
c in P(a):Def-P 15
:CD 16
:UD10
b within P(a):Def-S 9
b in P(P(a)):Def-P 19
:DD 20
:CD 8
:UD 4
P(a) within P(P(a)):Def-S 3
:DD 24